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Abstract. The exchange of trace gases between the Earth’s surface and its atmosphere drives atmospheric composition. 

Airborne eddy covariance can provide observational constraints on surface fluxes at regional scales, helping to bridge the 

gap between top-down and bottom-up flux estimates and offering novel insights into biophysical and biogeochemical 

processes. The NASA Carbon Airborne Flux Experiment (CARAFE) utilizes the NASA C-23 Sherpa aircraft with a suite of 

commercial and custom instrumentation to acquire fluxes of carbon dioxide, methane, sensible heat, and latent heat at high 20 

spatial resolution. Key components of the CARAFE payload are described, including the meteorological, greenhouse gas, 

water vapor, and surface imaging systems. Continuous wavelet transforms deliver spatially-resolved fluxes along aircraft 

flight tracks. Flux analysis methodology is discussed in depth, with special emphasis on evaluation of uncertainties and 

vertical flux divergence. CARAFE has successfully flown two missions in the Eastern U.S. in 2016 and 2017, quantifying 

fluxes over forest, cropland, wetlands, and water. Results from these campaigns highlight the performance of this system and 25 

its potential to further our understanding of ecosystem exchange. 

1 Introduction 

Accurate, quantitative, process-based understanding of current greenhouse gas (GHG) budgets (principally carbon dioxide 

(CO2) and methane (CH4)) is essential to projecting carbon-climate feedbacks and, hence, future climate (Friedlingstein et 

al., 2006; Schimel et al., 2015). While the atmospheric concentrations of these gases can be readily measured (Andrews et 30 

al., 2014), it is the sources and sinks at the Earth’s surface and chemical conversion in the atmosphere that drive their 

changing abundances. On a global basis, the typical CO2 budget is constructed from fossil fuel use inventories, estimates of 

ocean flux from solubility calculations, the measured time rate of change of the atmospheric CO2 burden, perhaps a land use 
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change/biomass burning emission term, and a land vegetation uptake flux inferred as the residual (Ciais et al., 2013; Le 

Quere et al., 2016).  This construct provides very little information on the nature and distribution of the land flux or its 

potential variations. Global CH4 budgets are similarly under-constrained in detail (Dlugokencky et al., 2011). 

More specific flux information is commonly inferred from so-called top-down and bottom-up flux estimates. The 

former involves measuring atmospheric gradients in GHG mixing ratios and combining them with some estimate of volume 5 

transport to infer flux to/from the surface (flux inversion) (Chevallier et al., 2010; Gurney et al., 2002). This method can be 

applied across a wide range of scales but requires accurate transport characterization and intensive GHG sampling. More 

recently, satellite measurements have been employed to provide increased sample density and coverage beyond that 

available from in situ measurements (Basu et al., 2013; Houweling et al., 2015). Bottom-up GHG flux estimates for 

terrestrial vegetation can be obtained from biogeophysical process models (Schaefer et al., 2008) and/or analysis of GHG 10 

flux observations, the latter typically from large tower networks such as AmeriFlux (Boden et al., 2013; Jung et al., 2012). 

Top-down and bottom-up flux estimates often compare poorly and models disagree among themselves in regional flux 

estimation (Hayes et al., 2012; Huntzinger et al., 2012). This situation suggests the need for a complimentary measurement 

approach, such as airborne eddy covariance.  

Eddy covariance (EC) directly quantifies surface-atmosphere exchange. The technique relies on acquiring fast, 15 

simultaneous measurements of vertical wind speed and a scalar quantity (e.g. temperature, gas concentration). When 

measuring near the surface, fluctuations in vertical wind speed and scalar magnitude correlate positively if the surface is a 

net source for that scalar and negatively if the surface is a net sink. The time- or spatial-average product of vertical wind and 

scalar fluctuations (their covariance) thus yields a direct measurement of the flux at the measurement altitude.  

 Airborne and ground-based flux techniques each offer unique advantages. Tower networks can provide sparse but 20 

continuous data over long periods of time; however, fixed towers typically have an effective “flux footprint” of a few km or 

less and may not be fully representative of an ecosystem. Airborne observations provide superior spatial coverage but at the 

cost of reduced temporal information. Upscaling to diurnal cycles and long-term trends may require coupling with co-located 

tower observations and/or biophysical models. The main advantage offered by airborne EC, especially when combined with 

wavelet transforms, is the ability to characterize a wide range of ecosystems at model-relevant scales (10–100 km) while 25 

retaining the fine-scale information (~ 1 km) needed to test process-based biophysical parameterizations. 

Airborne EC has elucidated surface-atmosphere exchanges processes for more than three decades (Desjardins et al., 

1982; Lenschow et al., 1981). Recent applications include evaluations of NEE over forests and cropland (Miglietta et al., 

2007), CH4 emissions from shale gas production regions (Yuan et al., 2015) and agricultural areas (Desjardins et al., 2018; 

Hiller et al., 2014), and measurements of emissions, deposition and chemistry of reactive gases over forests (Karl et al., 30 

2013; Misztal et al., 2016; Misztal et al., 2014; Wolfe et al., 2015). Traditionally, airborne EC has been limited to small, low-

flying aircraft (Gioli et al., 2004), but recent work has demonstrated successful flux observations from larger platforms 

(Wolfe et al., 2015; Yuan et al., 2015) that offer increased payloads for more complete ecosystem characterization. 
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Furthermore, the application of wavelet transforms relaxes experimental requirements for stationarity and homogeneous land 

cover. 

The NASA Carbon Airborne Flux Experiment (CARAFE) is a new system engineered specifically for acquisition 

of airborne fluxes and related properties. To date, CARAFE has flown two 40-hour missions, one in September 2016 and 

another in May 2017. Table S1 in the supplementary information (SI) details the times and locations of each flight, and flight 5 

tracks are shown in Fig. 1f. Based out of NASA Goddard Space Flight Center’s (GSFC) Wallops Flight Facility (WFF), 

flights targeted forest, farmland, wetlands and open water along the central U.S. East Coast. Here we describe the key 

components of the CARAFE payload and the methodology for deriving surface fluxes of CO2, CH4, sensible heat and latent 

heat. We utilize selected observations from both missions to demonstrate capabilities and performance. Future publications 

will present flux results for specific process representations in greater detail. 10 

2 Platform and instrumentation 

Here we describe the aircraft and core measurements included on both CARAFE deployments. Table 1 summarizes relevant 

specifications for each system. Key components include the aircraft, 3-D winds and associated meteorology, fast water vapor 

and greenhouse gas measurements, and a surface imaging system. 

2.1 NASA C-23B Sherpa 15 

The NASA C-23B Sherpa (Fig. 1a) is a high-wing, twin turboprop aircraft operated by NASA WFF. Modifications to 

support airborne science include addition of a variety of instrument ports and dedicated experimenter power (Fig. 1b—e). 

The Sherpa was first deployed during NASA’s Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) to survey 

the abundance of CO2, CH4, and related gases in Canada and Alaska (Chang et al., 2014). Subsequent upgrades for 

CARAFE, as detailed below, now permit direct observations of surface exchange via eddy covariance. 20 

The Sherpa is ideally suited for airborne flux measurements. The nominal minimum flight speed of 75 m s
-1

 is 

sufficient for sampling turbulence statistics in the mixed layer. For example, a 10 Hz measurement corresponds to a data 

point every 7.5 m, and the scale of peak turbulence is roughly proportional to altitude (~100 m for a typical low-level leg). 

The nominal altitude envelope of 0.1—3 km facilitates both near-surface sampling and boundary layer profiling, and a range 

of ~1000 km (duration of 4—5 h) permits regional sampling from a single deployment location. With a payload weight and 25 

power capacity of 7000 lb and 6 kW, the Sherpa can support a full measurement suite for detailed in situ and surface 

observations. The payload described below uses roughly half of available weight and power. 

  Typical flux flight patterns consist of stacked level legs and vertical soundings. Level legs are mostly at an altitude 

of 90—150 m above ground level and range in length from 20—100 km. Occasional level legs higher in the boundary layer 

(200—400 m) provide a constraint for vertical flux divergence. Vertical soundings are required to assess boundary-layer 30 

depth and ideally occur in the middle of the target area at both the beginning and end of a sortie. 
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2.2 Meteorology and telemetry 

The Sherpa Turbulent Air Motion and Meteorology System (TAMMS) is a suite of sensors for high-frequency measurement 

of horizontal and vertical wind vectors, pressure, and temperature. Winds are derived from five pitot static-pressure ports 

mounted on the radome (nose) of the aircraft (Brown et al., 1983; Thornhill et al., 2003). In essence, these sensors provide 

the velocity of air with respect to the aircraft. Combining this information with a high-quality GPS and Inertial Navigation 5 

System (Applanix 510) yields the velocity of air with respect to the Earth’s surface. Calibration via standard aircraft 

maneuvers (Barrick et al., 1996) corrects for aircraft motion and specific features of the pressure field around the aircraft. A 

hatch on the forward left side supports a Rosemount model 858 angle-of-attack probe for redundant vertical wind 

measurements and a Rosemount model 102 non-deiced total air temperature sensor housing coupled with a platinum sensing 

element (E102E4AL) (Stickney et al., 1990) for fast (~8 Hz) air temperature (Fig. 1c). A NASA Airborne Science Data and 10 

Telemetry (NASDAT) system (https://asapdata.arc.nasa.gov/asf/sensors/nasdat.html) records data from these sensors at 20 

Hz. The NASDAT also serves as a hub for GPS and network connections to other instruments. 

 The quality of the 3-D wind measurement hinges on the performance of the differential pressure measurements. For 

the 2016 campaign, both the radome system and the 858 probe were equipped with Honeywell PPT2 transducers. Afterward, 

spectral analysis of vertical wind speeds revealed anomalies at frequencies above 0.1 Hz. For the 2017 campaign the radome 15 

system was equipped with pressure sensors employing a higher sampling rate (Rosemount Model 1221), giving wind spectra 

more consistent with theoretical expectations (Fig. S1a). Comparison of the two wind systems for 2017 indicates that the 858 

probe/Honeywell system misses 28 ± 3% of vertical wind variance, resulting in a systematic flux bias of 18 ± 2% for leg-

average fluxes and larger potential bias at higher spatial resolution (Fig. S1b). Due to this issue, fluxes and related quantities 

presented here will primarily utilize results from the 2017 mission. Work is ongoing to develop a spectral correction for the 20 

2016 observations. 

 An upward-looking photosynthetic photon flux density (PPFD) sensor (LI-COR LI-190R) is mounted on the wing 

and sampled at 1 Hz via the greenhouse gas system. This sensor is designed for level and stationary ground applications but 

performed well on initial flights. Section S1 in the SI describes post-processing of PPFD data to correct for aircraft attitude 

and sun position. 25 

2.3 Fast water vapor 

The NASA Langley Diode Laser Hygrometer, or DLH (Diskin et al., 2002), is an open-path infrared absorption spectrometer 

that uses a variation of wavelength modulation spectroscopy (Silver, 1992) to measure water vapor mixing ratios. The DLH 

uses a laser locked to a water vapor absorption feature at ~1.395 µm and directs the beam from a transceiver mounted on the 

fuselage onto a retroreflector fixed to the upper surface of the Sherpa landing gear fairing (Fig. 1d). The returning light is 30 

collected and detected in the transceiver with a total roundtrip light path of ~2.5 m. Modulated signals are demodulated at 

twice the driving frequency (2F detection) and are converted to water vapor mixing ratio using laboratory-determined laser 
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characteristics, spectral parameters taken from the HITRAN 2012 database (Rothman et al., 2013), and the aircraft static 

pressure and temperature measurements. Raw data are processed at the instrument’s native ~100 Hz acquisition rate. For 

CARAFE, data are averaged to 20 Hz with a typical precision (1σ) of 0.3% or better. Overall measurement accuracy is 

within 5%, based on numerous field inter-comparisons on other airborne platforms. 

2.4 Greenhouse Gas Suite (GHG) 5 

The GHG system consists of several modified commercial analyzers coupled with custom hardware for fast gas flow and 

centralized data acquisition. Two Los Gatos Research (LGR) analyzers, one for CO2 (model # 907-0020-1000) and the other 

for CH4 and water vapor (model # 913-0014-0001), acquire mixing ratios at 10 Hz. The gas sampling system of each LGR is 

modified with a proportioning valve (IQ Valves, 0.234” orifice) coupled to a PID controller (Omega) to maintain a sample 

cell pressure of 140.0 ± 0.1 Torr throughout the Sherpa altitude range. Small pressure fluctuations in this range do not 10 

noticeably impact measurement precision, and instrument pressure fluctuations are uncorrelated with wind speed 

fluctuations. Dry scroll pumps (Edwards nXDS15i) maintain a gas flow of ~35 SLM through each system. Laboratory 

evaluation of the LGR time response (Fig. S4) gives an e-fold flush time of 90 ± 16 ms, or an effective cutoff frequency 

(following the definition of Aubinet et al. (2016)) of 3.8 Hz. A Picarro G1301-m analyzer supplies an additional set of 

CO2/CH4/H2O mixing ratios. Compared to the LGR analyzers, the Picarro provides a reduced duty cycle (~5 s for CO2 and 15 

CH4, ~15 s for H2O) but greater precision and stability. Thus, the LGR systems provide fast measurements needed for EC 

flux calculations while the Picarro serves as an accuracy standard. For the 2016 deployment, a Picarro G2401-m replaced the 

G1301-m for the last four flights following a power supply failure on the latter. The specifications and accuracy are very 

similar for these two instruments, though the (newer) G2401-m offers a faster data rate (~0.5 Hz) and better precision (based 

on in-flight comparison with the LGRs, Fig. 2d). Data streams from all analyzers, along with a GPS feed, are recorded via 20 

RS232 using a National Instruments CompactRIO controller. 

 The external gas inlet is a 6” length of 0.5” OD stainless steel tube (Fig. 1e). The tip of the inlet features a 15° rear-

facing bevel to reject large particles. The inlet is mounted on an access hatch on the starboard side roughly 3 m aft of the 

nose. Directly behind the mounting plate, a tee connects to two identical lengths of Teflon PFA tubing (0.375” ID, 5.2 m 

length). Each tube terminates at a high-flow inline Teflon particle filter (Entegris WGMXMBSS4) before connecting to one 25 

of the two LGR sample gas inputs. The Picarro analyzer sub-samples at 0.4 SLM from the LGR CH4/H2O line. For typical 

flow rates and low-altitude flight, this configuration gives a gas sampling line residence time of 0.7 s and a Reynolds number 

of 4600.  

 Post-processing of GHG data occurs in several steps. First, data from all instruments are roughly time-aligned (to 

within ~1 s for the Picarro and ~0.1 s for the LGRs) using both the internal timestamp of the data acquisition system and the 30 

GPS timestamp. Next, CO2 and CH4 observations are converted to dry mixing ratios using native H2O measurements (LGR 

CO2 is corrected using H2O from the LGR CH4/H2O sensor, time-aligned via lag-correlation). The corrections, which 

account for both density and spectroscopic effects, follow the quadratic form suggested for the Picarro G1301-m (Chen. et 
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al., 2010; Rella, 2010) but with laboratory-derived, instrument-specific coefficients (Fig. S3). Picarro CO2 and CH4 mixing 

ratios are calibration-corrected via small scaling factors (1.0026 for CO2, 0.9994 for CH4) based on comparisons to a NIST-

traceable certified gas standard (NOAA ESRL) pre- and post-mission. Picarro G1301-m water vapor is calibration-corrected 

following the manufacturer’s recommendation (Rella, 2010). Finally, for each flight, LGR observations of CO2, CH4 and 

H2O are lag-correlated and linearly transformed to optimize agreement with the Picarro data. This procedure corrects for 5 

minor flight-to-flight drift that may occur in the LGRs under different operating conditions. Figure 2 shows linear fits for all 

flights from 2016 (results are similar for 2017). Linear correction factors vary little from flight-to-flight. One exception to 

this procedure occurred on Flight 5 (16 Sept 2016), where a narrow concentration range gave an atypically poor water fit 

(Fig. 2d). Comparison of H2O observations between the LGR, Picarro, and DLH instruments (Sect. 4) corroborates this 

result. For this flight, the campaign-average slope and intercept were used to calibration-correct LGR H2O. 10 

2.5 Surface Imaging System (SIS) 

The nadir viewing Surface Imaging Suite (SIS) consists of three cameras: a high resolution digital visible color camera 

(Nikon D7000), a thermal imager (FLIR A325sc), and a multiband camera specifically intended to observe vegetative health 

(MicaSense RedEdge). The Nikon D7000 is a single lens reflex camera incorporating a “DX” format 16.2 Megapixel CMOS 

imaging sensor (1.5X “crop factor”) and 28 mm focal length lens. The lens was chosen to maximize field of view while 15 

minimizing distortion. The shutter speed is generally set to 1/1000 second with an ASA/ISO of 640. Aperture is controlled 

by the camera, the manual focus is fixed at infinity, and images are captured on two SD memory cards. The FLIR A325sc is 

an uncooled microbolometer with sensitivity covering the range of 7.5 to 13.0 µm and a 320 x 240 imaging sensor. The lens 

focal length is 9.7 mm, providing a 45° x 34° field of view. Data is captured by small notebook computer. The MicaSense 

RedEdge is a five-band imager covering the spectral range of approximately 460 to 860 nm with blue, green, red, near-20 

infrared, and red-edge sensors. The camera has fixed focus and fixed field of view, and images are captured internally on an 

SC memory card. All three cameras are set for 1 s recording intervals, and time tagging and geolocation is done by remote 

GPS. Aircraft power (0.6 A) eliminates battery charging requirements, and the system is essentially autonomous. All 

imagery is downloaded after each flight and archived by the Wallops Remote Sensing Group. Figure 3 illustrates typical 

products acquired from this system.  25 

 The primary purpose of the SIS is to provide real-time qualitative information on surface characteristics and 

features that may influence gas and energy exchange. A rigorous comparison between imagery and airborne fluxes is non-

trivial, as the flux footprint extends upwind of the aircraft with a typical half-width of several km, often exceeding the 

(altitude-dependent) swath width of the imagers. It is possible that an assumption of local surface homogeneity may be valid 

in some situations. Further work is needed to fully exploit the potential of combined surface imaging and in situ 30 

observations. 
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3 Flux calculations 

The flux methodology for CARAFE builds on previous work in airborne and ground-based EC. All calculations utilize a 

custom MATLAB toolbox, available upon request. Wavelet calculations utilize the framework described in Torrence and 

Compo (1998). 

3.1 Pre-processing 5 

Data from the TAMMS, DLH, and GHG systems are averaged or re-gridded to a common 10 Hz time base. De-spiking is 

generally not necessary as data are quality controlled prior to archiving. Individual flux legs are identified through inspection 

of heading, aircraft attitude, and vertical wind speed. We require that each leg be relatively level (±20 m altitude above 

ground). Data are also filtered to exclude aircraft roll exceeding 5 degrees to minimize potential artifacts in the vertical wind 

measurement. Wind vector rotation is not required as winds are already reported in a geodetic reference frame.  10 

For each leg and each scalar time series, scalar data undergo mean removal and lag-correlation to the vertical wind 

measurement. Lag times, with a typical range of 0—0.5 s, are determined through inspection of lag-covariance plots and 

held constant for each flight. Following Mauder et al. (2013), lag-covariance functions are calculated using fast Fourier 

transforms, and frequencies below 0.02 Hz (spatial scales greater than ~4 km) are removed to limit the influence of scalar 

trends on (co)variances. Note that these filtered lag-covariance functions are used for lag time determination and error 15 

calculations but not for calculation of actual fluxes.  

Planetary boundary layer depth (zi), required for calculation of flux errors and footprints, is assessed through 

examination of gradients in potential temperature and water vapor mixing ratio during vertical soundings. Due to mission 

constraints, soundings are not always located in the center of the target area or only occur at the beginning or end of a flight, 

making it difficult to quantify spatial or temporal variability in zi. Thus, we assume a constant value for each target area. The 20 

uncertainty in this approximation is roughly ±100 m based on observed variability in BL depth for flights with multiple 

soundings. Determination of exact BL depth is not critical, as flux errors and footprints scale as a fractional power of zi. 

3.2 Ensemble average flux 

Traditional ensemble average (EA) fluxes are calculated for each leg using vertical wind speed w and scalar s with the 

standard formulation. 25 

𝐹𝐸𝐴 = 〈𝑤′𝑠′〉            (1) 

Primes denote deviation from the mean. In addition, we derive spectra and cospectra using fast Fourier transforms (FFT) for 

each leg. These calculations are primarily for comparison with wavelet-derived quantities and are not used for scientific 

analysis, as terrain is often heterogeneous and observations are often non-stationary. A stationarity quality flag, qstat, is 

calculated using the criteria of Foken and Wichura (1996): 30 

𝑞𝑠𝑡𝑎𝑡 =  |1 − 𝐹𝐸𝐴,5
̅̅ ̅̅ ̅̅ 𝐹𝐸𝐴⁄ |           (2) 
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Here, 𝐹𝐸𝐴,5 represents the mean of EA fluxes calculated on five evenly-sized sub-intervals within a leg. Ideally stationary 

legs will give qstat = 0. 

3.3 Continuous wavelet transform flux 

The continuous wavelet transform (CWT) is a powerful and popular tool for time series analyses in atmospheric science. For 

a time series x(t), wavelet coefficients Wx(a,b) are calculated as a function of location (time or distance) and scale (frequency 5 

or wave number) by convolving the time series with a wavelet function (). 

𝑊𝑠(𝑎, 𝑏) = ∫ 𝑠(𝑡)𝜓𝑎,𝑏(𝑡)𝑑𝑡
∞

−∞
          (3) 

𝜓𝑎,𝑏(𝑡) =
1

√𝑎
𝜓0 (

𝑡−𝑏

𝑎
)           (4) 

Here, the size and location of the wavelet are determined by the scale (a) and translation (b) parameters, respectively. 

Normalization of the wavelet function by a
-1/2

 preserves the energy of the wavelet at different scales (Torrence and Compo, 10 

1998). The CWT cospectrum is defined here as the cross-wavelet power of w and s, |𝑊𝑤𝑊𝑠
∗|, normalized by wavelet scale to 

correct for bias (Liu et al., 2007). We note that the latter operation is functionally equivalent to the common practice of 

multiplying FFT cospectra by frequency. 

The wavelet function is actually a family of functions stemming from a “mother” wavelet, 0. Mother wavelets are 

typically chosen based on the application, but a defining feature is localization in both the time and frequency (or distance 15 

and wave number) domains. This property, combined with scaling and translation, permits the wavelet transform to de-

convolve contributions to time series variance along both the time (distance) and frequency (wave number) domains. In this 

work we utilize the Morlet wavelet, which is a plane wave modified by a Gaussian: 

𝜓0(𝜂) = 𝜋−1/4𝑒𝑖𝜔0𝜂𝑒−𝜂2/2 , 𝜔0 = 6         (5) 

The Morlet wavelet is the standard choice for eddy covariance calculations, giving reasonable localization in both time and 20 

frequency domains (Schaller et al., 2017). 

The CWT is well-suited for airborne fluxes, offering several key advantages over traditional EA and FFT. 

Application of the CWT does not require stationarity, a condition that may be violated during long flight legs. This property 

also eliminates the need for signal detrending, improving quantification of long-wavelength flux contributions (Mauder et 

al., 2007). The technique provides a time series of fluxes along a flight track, removing the need to block-average 25 

homogenous sub-sections of the flight and giving relatively fine surface resolution that is essential when surveying patchy 

terrain. Further descriptions of CWT applications to airborne fluxes can be found elsewhere (Desjardins et al., 2018; Karl et 

al., 2009; Kaser et al., 2015; Mauder et al., 2007; Metzger et al., 2013; Misztal et al., 2016; Misztal et al., 2014; Vaughan et 

al., 2016; Wolfe et al., 2015; Yuan et al., 2015). 

 Figures 4 and 5 illustrate a typical set of CWT flux results for CO2 using observations over the Great Dismal 30 

Swamp, VA. The transect included sampling over forest, bog, and a small lake. The location of the lake at 15—22 km 

(distance relative to the start of the transect) is evident in the reduced variability of vertical wind speed (Fig. 4a). As 
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expected, cospectral power (Fig. 4b) is mostly negative, enhanced over land (beginning and end of leg), and diminished over 

the lake. Integrating the local wavelet cospectrum over all scales yields the flux time series (Fig. 4c). In this example, the EA 

flux (also shown in Fig. 4c) is within 4% of the leg-average wavelet flux. This agreement can vary considerably from leg to 

leg, and in general we find that the agreement of EA and CWT fluxes is well correlated with stationarity (Fig. S5). Thus, 

comparison of EC and CWT fluxes may not be a useful quality metric for wavelet fluxes as suggested by some previous 5 

studies (Misztal et al., 2014). “Instantaneous” 10 Hz fluxes exhibit significant variability due to both instrument noise and 

the random nature of turbulence, and some averaging is required to obtain an estimate of “true” surface fluxes (discussed 

further below). 

Averaging the local wavelet cospectrum along time/distance gives the global cospectrum (Fig. 5). Ogives 

(cumulative cospectra) are also shown. In this example, 90% of the cospectral power occurs in the range of 0.03—0.7 Hz, 10 

corresponding to eddy scales of 2500—100 m for an aircraft speed of 75 m s
-1

. The comparable FFT cospectrum shows the 

same features but with more noise. The ogive also indicates that 99% of flux-carrying eddies occur below 1.4 Hz (54 m). 

Thus, fast sampling requirements are less stringent at altitude than at the surface and a true 10 Hz measurement, while 

desirable, is not strictly necessary. On the other hand, eddy scales increase with altitude and legs must be long enough to 

capture all modes of turbulent variability. Figure 5 shows a secondary peak in cospectral power at ~0.0075 Hz, or ~10 km. 15 

3.3.1 Cone of influence 

The cone of influence (COI) is the spectral region where wavelet coefficients may contain artifacts due to edge effects. As 

shown in Fig. 4b, the COI encompasses all scales at the ends of the time series and tapers toward larger scales (lower 

frequencies) near the center. Following the definitions of Torrence and Compo (1998) for the Morlet wavelet with 0 = 6, 

the COI threshold scales linearly with distance from the beginning or end of the time series with a scaling factor of 0.73. 20 

This is an important consideration in flight planning. For example, if the largest flux-carrying eddies are ~5 km as in Fig. 5, 

the COI will fall below this value at distances greater than 5 km/0.73 = 6.8 km from leg edges. Thus, flight legs should be 

padded at least this distance on either end to ensure fully-resolved fluxes over a target area. 

Treatment of the COI can impact scale-integrated CWT fluxes. Some previous studies exclude the COI before 

calculating fluxes (Vaughan et al., 2016), while others include it (Misztal et al., 2014). For short-length or higher-altitude 25 

flight legs, neglecting cospectral power within the COI may create systematic errors due to exclusion of larger-scale flux 

contributions. On the other hand, inclusion of covariance within the COI can lead to spurious fluxes, especially near the ends 

of a leg and when fluxes are small. Here we develop a quality flag to quantify the potential impact of the COI and examine 

the effects of including or excluding the COI in scale-averaged fluxes. 

The quality flag, qCOI, is calculated by interpolating global ogives (e.g. Fig. 5) onto the time series of COI threshold 30 

(given in frequency units). Mathematically, for time t and frequency f, 

𝑞𝐶𝑂𝐼(𝑡) = 𝑜𝑔𝑖𝑣𝑒𝑤,𝑥(𝑓 = 𝐶𝑂𝐼(𝑡))          (6) 
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For this calculation, the ogive is calculated by integrating the absolute value of cospectral power to avoid negative values. 

Ranging from 0 to 1, this flag roughly represents the fraction of cospectral power within the COI at each point in time. For 

example, for the data shown in Fig. 4b, the COI threshold at a distance of 5 km (time of 60 sec) occurs at a frequency of 

0.022 Hz. The global ogive value at this frequency is 0.12 (Fig. 5), indicating that 12% of the global cospectral power lies at 

lower frequencies, and thus qcoi = 0.12 for this time/location. The qCOI flag can be used to filter scale-averaged CWT fluxes; 5 

for example, crosses in Fig. 4c indicate fluxes with qCOI > 0.5. Thus, more than half of the cospectral power resides within 

the COI for these times. 

 Figure 6 compares CWT and EA fluxes to quantify the potential impacts of COI treatment. This analysis is 

restricted to legs that are highly stationary (qstat < 0.1) to ensure the quality of EA fluxes. Scale-averaged CWT fluxes are 

calculated by either including or excluding the cospectral power within the COI (see Fig. 4b). The resulting flux time series 10 

is subsequently filtered using a specified maximum qcoi prior to leg-averaging. For example, a max qcoi of 0.2 indicates that 

all points in the time series with more than 20% of cospectral power within the COI are excluded from the leg-averaged flux. 

CWT fluxes under-predict EA fluxes by as much as 14% on average when omitting the COI and agree within 5% when 

including the COI. Addition of the qcoi filter reduces the CWT-EA discrepancy by removing CWT fluxes near leg edges 

where the COI influence is strongest. More restrictive filters (lower maximum qcoi) improve agreement at the expense of data 15 

density. For example, filtering for CWT fluxes with qcoi less than 0.6, 0.4 and 0.2 removes 6%, 12% and 28% of 1 Hz CWT 

fluxes, respectively. We choose to include the COI when calculating CWT fluxes and assume fluxes are valid for qcoi < 0.5. 

From Fig. 6, this choice may reduce leg-average fluxes by ~2% on average. 

3.3.2 Data gaps 

Wavelet analysis is inherently designed for contiguous data, but data gaps are inevitable in field observations. Such gaps 20 

most commonly result from instrument calibrations or unfavorable aircraft attitude (e.g. evasive pitch or roll to avoid avian 

hazards). Since the wavelet algorithms of Torrence and Compo (1998) rely on fast Fourier transforms, these gaps must be 

removed or filled prior to performing the CWT. Several studies have suggested procedures for modifying wavelet basis 

functions to handle gaps (Frick et al., 1997; Frick et al., 1998; Mondal and Percival, 2008), but it is not clear how to 

implement such methods within our framework. SI Section S2 describes an empirical method that utilizes the covariance of 25 

scalar and vertical wind speed fluctuations to fill gaps with projected values. Even this method introduces some error in 

wavelet fluxes, especially in the immediate vicinity of a gap (Fig. S6). Transient errors are typically below 30% with a 

spatial extent that scales with the width of the gap. To be conservative, we discard wavelet fluxes within a gap and on either 

side of a gap out to a distance equal to the gap width. In practice, gaps are rare and this procedure has a minimal impact on 

the total flux dataset. 30 
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3.4 Uncertainties 

Uncertainty in EC fluxes arises from measurement limitations, sampling strategies, and the fundamental nature of 

turbulence. Methods to quantify flux errors are reviewed elsewhere (Langford et al., 2015; Mauder et al., 2013; Rannik et al., 

2016). Here we leverage a combination of these methods and suggest a new technique to quantify the total random error in 

wavelet fluxes. Figure 7 summarizes errors for the 2017 field campaign for all legs at altitudes below 200 m. Note that fluxes 5 

of CH4 were negligibly small for most of the mission, thus the fractional errors are biased high. When flying over methane 

source regions (e.g. wetlands), CH4 flux errors are comparable to those in CO2 flux. In the following discussion, we adopt 

the convention of defining systematic errors as a fraction or percentage of the flux and random errors as an absolute value (in 

flux units). 

3.4.1 Systematic errors 10 

Under-sampling of turbulent fluctuations at both low and high frequencies creates systematic flux errors. For airborne 

observations, Lenschow et al. (1994) derive an upper limit for systematic error fraction due to under-sampling of low 

frequencies (long wavelengths) as a function of altitude above ground level (z), boundary layer depth (zi), and leg length (L).  

𝑆𝐸𝑡𝑢𝑟𝑏  ≤  2.2 (
𝑧

𝑧𝑖
)

0.5 𝑧𝑖

𝐿
           (7) 

SEturb ranges from 1% to 6% of observed fluxes (Fig. 7, light gray). The CWT utilizes data from the whole leg and thus 15 

theoretically captures all resolvable long-wavelength flux contributions at any given point in time. Thus, we assume this 

fractional error is constant for each point within a leg, irrespective of averaging length (e.g. a 1 km average is assigned the 

same SEturb as the whole leg). 

 Limited instrument time response is the main cause of high-frequency systematic errors for the CARAFE payload. 

The open-path DLH instrument does not suffer from such limitations and thus serves as a time response standard. The ratios 20 

of cospectra for temperature, CO2, CH4 and LGR H2O fluxes against DLH H2O cospectra exhibit a characteristic decay at 

high frequencies that is well described by the transfer function (Horst, 1997) 

𝐻𝑠(𝑓) =
𝐶𝑜𝑤,𝑠(𝑓)

𝐶𝑜𝑤,𝐷𝐿𝐻(𝑓)
=

1

1+(2𝜋𝜏𝑠𝑓)2          (8) 

Here, f is natural frequency and s is a characteristic response time for scalar s. Fitting Eq. (8) to global wavelet cospectra for 

all legs gives typical response times of 0.09 s for temperature and CO2 and 0.1 s for CH4 and LGR H2O, consistent with lab 25 

tests (Fig. S4). Systematic error fraction due to response time is calculated for each leg as 

𝑆𝐸𝑅𝑇 =
∫ 𝐻𝑥(𝑓)𝐶𝑜𝑤,𝑠(𝑓)𝑑𝑓

∞
−∞

∫ 𝐶𝑜𝑤,𝑠(𝑓)𝑑𝑓
∞

−∞

− 1          (9) 

Values for SERT are typically less than 10% of observed fluxes (Fig. 7, light green) and are assumed constant for each leg. 

When fluxes are small, Eq. (9) can amplify high-frequency noise and SERT may become unrealistically large. Thus, reported 

fluxes are not explicitly corrected for this error. 30 
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 Accuracy in both the vertical wind and scalar measurements (Table 1) directly propagates into calculated fluxes. 

This systematic error (SEacc), of unknown sign, adds uncertainties of 5% to CO2 and CH4 fluxes, 7% to sensible heat and 

DLH latent heat fluxes, and 8.6% to LGR latent heat flux (Fig. 7, dark green). 

3.4.2 Random errors 

Random flux errors arise from both uncorrelated noise in scalar measurements and the stochastic nature of turbulence. Errors 5 

due to uncorrelated instrument noise are calculated as 

𝑅𝐸𝑛𝑜𝑖𝑠𝑒 = √𝜎𝑠,𝑛𝑜𝑖𝑠𝑒
2 𝜎𝑤

2 𝑁⁄            (10) 

Here, w
2
 is the variance of vertical wind speed over a whole leg and N is the number of points. The noise variance in scalar 

s, 𝜎𝑠,𝑛𝑜𝑖𝑠𝑒
2 , is derived from the auto-covariance function as described elsewhere (Langford et al., 2015; Lenschow et al., 2000; 

Mauder et al., 2013). Relative to the total flux, this error is typically less than 10% for sensible and latent heat but can be up 10 

to 50% for CO2 and over 100% for CH4 (Fig. 7, indigo), particularly when fluxes are small. For turbulence sampling errors 

in airborne fluxes, Lenschow et al. (1994) suggest the following upper limit (as a fraction of total flux): 

𝑅𝐸𝑡𝑢𝑟𝑏

𝐹
 ≤  1.75 (

𝑧

𝑧𝑖
)

0.25

(
𝑧𝑖

𝐿
)

0.5

          (11) 

Values for REturb typically range from 10% to 30% of leg-average flux (Fig. 7, dark gray). This equation suggests several 

strategies for reducing random errors, including reduced altitude, averaging over distance, or averaging over repeated legs. 15 

The total random error is the square root of the sum of squared errors from Eq. (10) and (11). Alternatively, the total 

error can be estimated empirically as the variance of the covariance between s and w. (Finkelstein and Sims, 2001). 

𝑅𝐸𝐹𝑆01 = √
1

𝑁
∑ (𝑠′𝑠𝑝

′̅̅ ̅̅ ̅ 𝑤′𝑤𝑝
′̅̅ ̅̅ ̅̅ ̅ + 𝑠′𝑤𝑝

′̅̅ ̅̅ ̅̅  𝑤′𝑠𝑝
′̅̅ ̅̅ ̅̅ )𝑚

𝑝=−𝑚         (12) 

Arguments 𝑠′𝑤𝑝
′̅̅ ̅̅ ̅̅  and similar represent the unbiased cross-covariance or auto-covariance for lag p. Finkelstein and Sims 

(2001) suggest taking the summation over a sufficiently large m to capture the integral time scale, somewhere in the range of 20 

10—40 seconds. Mauder et al. (2013) further note that summing over too wide a range can give unrealistic results if a time 

series contains trends. Following Mauder et al. (2013), we calculate the lagged cross- and auto-covariance functions using 

fast Fourier transforms and remove frequencies below 0.02 Hz to limit trend effects. The maximum lag for the summation is 

set to 10 seconds based on comparison with the root-sum-square of REnoise and REturb. 

All of the above methods were originally developed for traditional EA eddy covariance, and it is not immediately 25 

obvious how to extend error calculations to time-resolved CWT fluxes. Several previous studies (Karl et al., 2009; Misztal et 

al., 2014; Vaughan et al., 2016) have defined the random error for distance-averaged wavelet fluxes (1—10 km means) by 

substituting the averaging length for leg length (L) in Eq. (11). There are several issues with this approach. First, it does not 

account for errors due to instrument noise, which can comprise a significant fraction of the total error when turbulence-

driven scalar variability approaches measurement precision. Second, Eq. (11) assumes that the flux calculated over distance 30 
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L uses only observations acquired over that same window; however, the CWT inherently integrates information from the 

entire leg to derive (co)variances. In other words, the CWT flux for a 1 km region is not equivalent to the EA flux calculated 

using only wind and scalar observations sampled within that same 1 km. 

We propose a novel method to calculate total random error along a wavelet flux time series. The technique is 

essentially an extension of Eq. (12), with lagged cross- and auto-covariance calculated using the scale and time-dependent 5 

wavelet coefficients. In analogy to Eq. (24) of Torrence and Compo (1998), the covariance between variables s and w for 

time t and lag p is given by 

𝑠′𝑤𝑝
′̅̅ ̅̅ ̅̅ (𝑡) =

𝛿𝑗𝛿𝑡

𝐶𝛿
∑

|𝑊𝑠(𝑎𝑗,𝑡)𝑊𝑤
∗ (𝑎𝑗,𝑡𝑝)|

𝑎𝑗

𝑗2
𝑗=𝑗1

𝑁

𝑁−|𝑝|
         (13) 

Here, 𝛿𝑗 is the wavelet spacing parameter (0.25 in our case), 𝛿𝑡 is the sample interval (0.1 s for 10 Hz data), 𝐶𝛿 is a wavelet-

specific reconstruction factor (0.776 for Morlet), and aj is the wavelet scale at index j. The last term on the right gives an 10 

unbiased covariance estimate. When taken over multiple lags, Eq. (13) defines a wavelet cross-covariance function between 

s and w at each point in time (Fig. S7). Analogous equations apply for the other cross and auto-covariance terms. Combining 

Eq. (12) and (13) thus gives the wavelet random error, REwave, as the variance of covariance along the time series. For this 

calculation the 1/N term in Eq. (12) is neglected, as the error is calculated for a single point in the time series and not the 

whole leg. As with the ensemble application of Eq. (12), the summation in Eq. (13) is restricted to scales with a 15 

corresponding Fourier frequency greater than 0.02 Hz and uses a lag range of ±10 s. This operation is computationally 

expensive for 10 Hz data, thus wavelet coefficients are averaged to 1 Hz before calculating REwave. This procedure yields 

comparable results to calculating errors from 10 Hz wavelet coefficients and then averaging to 1 Hz. 

Two internal checks validate this approach. First, leg-averaged wavelet cross- and auto-covariance functions are 

virtually identical to those from ensemble-based lag calculations (Fig. S7). Second, leg-averaged REwave values agree 20 

relatively well with both REFS01 and the root-sum-square of REturb and REnoise (Fig. S8). Typical REwave values range from 

10—50% of observed fluxes (Fig. 7, cyan).  

3.4.3 Total error 

Total systematic error (SEtot), given as a fraction of the flux over any interval, is the root-sum-square of SEturb, SErt, and 

SEacc. Systematic error components are assumed symmetric for simplicity. The total flux error is the root-sum-square of SEtot 25 

(multiplied by flux) and the random error, REwave. When time-averaging fluxes within a leg, fractional systematic errors are 

assumed constant while absolute random errors reduce as the mean of the root-sum-square REwave for each point in the 

average (see Eq. (1) in Langford et al. (2015)). 

𝑅𝐸𝑤𝑎𝑣𝑒
̅̅ ̅̅ ̅̅ ̅̅ ̅ = 1

𝑁
√∑ 𝑅𝐸𝑤𝑎𝑣𝑒

2            (14) 

Total (random + systematic) errors in 1 Hz fluxes generally range from 10—90% (Fig. 7, black). 30 

In comparing CWT fluxes with tower-based or modeled surface fluxes, additional errors arise from the divergence 

correction and footprint calculation (discussed below). Fractional uncertainty in the divergence correction spans a wide 
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range, from less than 2% to greater than 100% (Fig. 7, orange). This error stems from uncertainty in the linear fits and 

generally scales with altitude. Uncertainties due to footprint mismatch are not easily defined, though we note that a rigorous 

comparison to surface values must include a bound on this error term. 

3.5 Vertical flux divergence 

Extrapolation of airborne fluxes to the surface requires accounting for the change of flux with altitude, which should exhibit 5 

a near-linear profile in the boundary layer for non-reactive species. Vertical flux divergence can arise from several processes, 

as illustrated when considering the budget equation for a scalar s: 

𝜕𝐹

𝜕𝑧
= −

𝜕𝑠

𝜕𝑡
− 𝑈

𝜕𝑠

𝜕𝑥
+ 𝑄           (15) 

Terms on the right-hand side respectively represent storage, horizontal advection (the product of horizontal wind speed and 

concentration gradient), and net in situ production or loss, which is negligible here for the long-lived GHGs. We have 10 

neglected the generally small contributions from vertical subsidence and horizontal turbulent fluctuations (Karl et al., 2013). 

It is possible to constrain each of the right-hand terms with a carefully-designed flight plan (Karl et al., 2013; Kawa and 

Pearson, 1989). Alternatively, flux measurements at multiple altitudes in the boundary layer provide a means of directly 

quantifying the flux divergence slope. Here we describe a procedure for deriving divergence corrections and discuss some of 

the associated challenges. 15 

 Calculation of the divergence correction begins with selection of a subset of flux observations. Figure 8 shows an 

example sensible heat flux profile for a series of 15 legs flown over the same 43 km forest swath (within a cross-track 

horizontal spread of ~2 km). This is the only flight from either mission with multiple legs at 3 different levels. Most legs on a 

typical CARAFE flight occur at low altitude (90—150 m), with only 1 to 3 legs at higher altitudes (200—400 m). Ideally the 

upper-level legs would be situated in the upper half of the boundary layer (z/zi > 0.5), but this is not always possible due to 20 

flight restrictions and the difficulty of determining boundary layer depth in real time. Fitting and error estimation requires a 

minimum of 3 legs and 2 altitudes. Chosen by visual inspection, these legs must be relatively close to one another in both 

space and time for a reliable fit. Diurnal variability is evident at low altitude over the 3 hour afternoon flight shown in Fig. 8, 

and in this case we limit the fit to legs with a solar zenith angle of less than 38°. CWT fluxes are filtered prior to leg-

averaging using both the COI quality flag (qcoi < 0.5) and a “proximity” filter. The latter requires that each point within a leg-25 

average lies within 1 km of at least one point in every other leg. This proximity filter effectively trims the ends of each leg 

and limits the spatial average to regions of overlap. The choice of a 1 km radius is somewhat arbitrary and is a compromise 

between spatial overlap and data density, though we note that this is also a typical scale for a flux footprint. In some 

instances the proximity filter cannot be applied. For example, the fit in Fig. 8 uses legs from both the “east” and “west” 

tracks. Though these tracks are spaced ~2 km apart, the forest is fairly homogeneous and the fit is more robust with the 30 

inclusion of more points. 
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 Following data selection, divergence correction factors are calculated as follows. First, an error-weighted least-

squares fit of the filtered and leg-averaged flux versus altitude gives the slope, m, and intercept, b. Next, a scaling factor Cdiv 

is calculated as a function of altitude, with associated uncertainty derived from fit parameter uncertainties (𝛿𝑚 , 𝛿𝑏) using 

standard error propagation. 

𝐶𝑑𝑖𝑣(𝑧) =
𝐹(0)

𝐹(𝑧)
=

𝑏

𝑚𝑧+𝑏
           (16) 5 

𝛿𝐶𝑑𝑖𝑣 = ((
𝜕𝐶

𝜕𝑚
𝛿𝑚)

2

+ (
𝜕𝐶

𝜕𝑏
𝛿𝑏)

2

)
0.5

=
𝑧

(𝑚𝑧+𝑏)2
(𝛿𝑚2𝑏2 + 𝛿𝑏2𝑚2)0.5      (17) 

As shown in Fig. 7, the divergence scaling factor can vary considerably. “Typical” correction factors alter fluxes sampled 

below 200 m by 1—100%, and the additional uncertainty from this correction lies in a similar range. Multiplication of the 

CWT fluxes by the associated Cdiv then gives the surface-extrapolated flux. Divergence correction factors and their 

associated uncertainties are reported alongside CWT fluxes in archived data files. 10 

 The application of a “bulk” divergence correction inherently assumes that the correction is relatively invariant 

(within uncertainties) in both space and time for a given target region. It is possible to empirically test this assumption with 

observations. Figure S9a illustrates our tests for temporal and spatial variability in the divergence correction. Four of the 

2017 flights included two high-level legs spaced 1.5—2.2 h apart, allowing derivation of divergence corrections at two 

different times for the same region. For this test we separately fit two legs (one high and one low) and calculate Cdiv for each 15 

of the two sub-periods, then compare this to the Cdiv value derived from all four legs combined. Fits are done on fluxes of 

CO2, temperature, DLH H2O, and LGR H2O, giving a total of 16 scalar-flight pairs and 32 test cases. Based on this test, 95% 

of the sub-period Cdiv values differ by less than 22% from the full-flight Cdiv (Fig. S9b). To assess spatial variability, we 

divide each set of legs into two sub-regions of equal length, calculate the divergence correction in each of the sub-regions, 

and compare this to Cdiv calculated for the full region. Using the same set of fluxes as described above, this test includes 4 20 

species, 4 flights, 2 divergence pairs per flight and 2 sub-regions per pair for a total of 64 test cases. Spatial variability is 

larger than temporal variability, with 95% of the sub-region Cdiv values differing by less than 35% from the full region Cdiv 

(Fig. S9b). In general, we find that the spatiotemporal variability of divergences corrections is within the calculated 

uncertainty for the divergence correction factor. 

3.6 Footprints 25 

The flux footprint defines the distribution of surface sources/sinks contributing to the net flux observed at a given point. A 

simple 1-D metric for footprint size is the half-width, dx0.5, defined as the distance along the mean horizontal wind that 

contains 50% of the surface flux (Karl et al., 2013; Weil et al., 1992). 

𝑑𝑥0.5 = 0.9
�̅�𝑧2/3𝑧𝑖

1/3

𝑤∗            (18) 

Here, w* is the convective velocity scale. Footprint scales from this equation typically range from hundreds of meters to ~10 30 

km. For the CARAFE missions, estimates of dx0.5 are reported alongside 1 Hz fluxes. 
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Robust comparison with ground observations or gridded model output may require an estimate of the full 2-D 

footprint. In this case, the “footprint” is effectively a spatial weighting function that can be applied to spatially-resolved 

quantities prior to integration and comparison with observed fluxes. For tower comparisons, fluxes can be filtered for 

times/locations where both platforms sampled the same footprint area. Applications of footprint models for airborne flux 

analysis vary in complexity. For example, Misztal et al. (2016) define a series of circles with radii equal to dx0.5 and used 5 

these areas to integrate model-derived surface fluxes (with equal weighting within the circle). Sayres et al. (2017) utilize the 

1-D parameterization of Kljun et al. (2004), while others have augmented the latter with a cross-wind distribution function 

(Metzger et al., 2012; Metzger et al., 2013; Vaughan et al., 2016). The recent 2-D parameterization of Kljun et al. (2015) 

(hereafter K15) is an attractive next step, both because it is based on the same Lagrangian framework as its 1-D predecessor 

and because the Matlab code is freely available. All required inputs for this parameterization are available from the 10 

CARAFE flux system, and footprints are theoretically calculable at any resolution up to the native 10 Hz resolution of the 

data stream. Equation (18) and K15 give comparable footprint half-widths for typical low-level legs below 200 m altitude 

(results not shown). Agreement is primarily a function of the stability parameter, z/Lob (Lob being the Obukhov length). For 

higher-altitude legs in strong convective conditions (z/Lob < -2), footprint half-widths from K15 can be 2 to 4 times larger 

than dx0.5; K15 note that this regime approaches the limits of applicability for the parameterization. In future work with the 15 

CARAFE dataset, we will evaluate what level of footprint complexity is required for comparison with surface fluxes. 

4 Performance 

Here we present a subset of results that illustrate the quality and performance characteristics of CARAFE observations. This 

evaluation is not exhaustive, and future studies will continue to assess the quality of fluxes through both internal quality 

controls and, when possible, comparison to other observations. 20 

4.1 Spectral analysis 

Figure 9 exemplifies quality metrics for a low-level leg with appreciable fluxes in all measured species. All cross-covariance 

functions (Fig. 9a) display strong peaks with similar integral time scales of ~3 s (defined as the time at the first zero 

crossing). Power spectra (Fig. 9b) for temperature, DLH-H2O and vertical wind speed measurements exhibit the f
-2/3

 power 

law (f
-5/3

 when not frequency-multiplied) in the inertial subrange, consistent with theory (Kaimal et al., 1972; Kaimal et al., 25 

1976). In contrast, power spectra for CO2, CH4 and LGR-H2O show a shallower decay and exhibit a slope of ~1 above 0.4 

Hz, indicative of white noise. The effects of instrument noise are also reflected in the increased variability in the cross-

covariance functions at longer lag times and in the higher values of REnoise for these fluxes (Fig. 7). Despite the limited 

precision of the closed-path analyzers at higher frequencies, cospectra with vertical wind generally agree for all scalars (Fig. 

9c). 30 
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4.2 Water comparison 

The CARAFE payload includes two independent water vapor measurements, providing a unique inter-comparison 

opportunity. The DLH system is open-path, fast-response, and field-proven through numerous prior missions. The LGR 

system is closed-path, displays reduced precision at turbulence-relevant frequencies, and had not flown prior to the 2016 

mission. Figure 10 compares 1 Hz water mixing ratios and latent fluxes derived from both instruments. LGR water mixing 5 

ratios exhibit a small positive bias (slope = 1.05, r
2
 = 0.995) throughout the mixing ratio range sampled during the 2017 

CARAFE mission (0.3—1.5% by volume). This difference is well within the uncertainties of both instruments. LGR latent 

heat shows a somewhat larger bias relative to DLH latent heat (slope = 1.13, r
2
 = 0.87). The source of this extra ~8% bias in 

fluxes is unclear; it may be related to the contact of sample air with surfaces (such as the 5.2 m sample line), though we 

would generally expect gas-surface interactions to dampen concentration fluctuations and thus reduce the flux. The bias is 10 

small compared to typical flux uncertainties, thus we will not explore the issue further here. Similar results were obtained for 

the 2016 mission. 

4.3 Repeatability 

The stochastic nature of turbulence imparts substantial random errors into individual flux measurements. For a typical 1 Hz 

(~75 m) flux, random errors are on the order of hundreds of percent. Averaging rapidly reduces this error; for example, 15 

random errors in a 2 km average flux are typically 30—50%. Precision is also improved by repeated sampling over the same 

swath of land, as long as changes in flux over the averaging period are small relative to random errors. For example, Figure 

11 shows CO2 fluxes observed over five consecutive legs covering mixed farmland and forest. All legs were flown at an 

altitude of 100 m with a cross-track separation of less than 500 m. Typical dx0.5 values are 800 ± 300 m, and leg-average 

fluxes vary by less than 12% with no discernable time trend. Random variability is evident in the 2 km average flux values. 20 

Nonetheless, all profiles exhibit the same general trend with lower fluxes (0 to -15 mol m
-2

 s
-1

) at the beginning of the track, 

higher values (-10 to -30 mol m
-2

 s
-1

) near the midpoint, and a sharp decline at the eastern edge (near the Atlantic coast and 

more urban areas). Averaging all legs together in each 2 km bin further reveals this trend. The 1 random error for the multi-

leg average is ~22% of the flux. Roughly 47% of the individual 2 km averages are contained within 1 of the mean, and 

72% within 2. This is somewhat less than the 68%/95% expected for a normal distribution; however, we do not necessarily 25 

expect a Gaussian distribution. Furthermore, some leg-to-leg variability is expected due to changes in wind speed and 

direction and thus the flux footprint. Overall, this result provides some additional confidence in our random error estimates. 

5 Conclusions 

The NASA CARAFE project represents an important step towards the adoption of eddy covariance fluxes as a standard 

component of the airborne science toolbox. The C-23 Sherpa is well-suited for EC due to its particular balance of range, 30 
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speed, and payload, though any aircraft that is amenable to fast 3-D wind measurements is a viable platform. Continuous 

wavelet transforms are key to unlocking the full potential of airborne fluxes, but only if utilized within a framework that 

properly accounts for all sources of uncertainty and the peculiarities of the technique (cone of influence, divergence, etc.). 

Despite decades of research, airborne flux methodology is, in some respects, less developed than its ground-based 

counterpart. Future efforts must continue to refine measurement and analysis techniques by both leveraging earlier work and 5 

acquiring new observations over a variety of conditions and surfaces. 

 Direct observations of carbon and energy fluxes at regional scales, such as those provided by CARAFE, offer a new 

vector for probing earth-atmosphere-biosphere interactions. This type of dataset is rare, and more work is needed to 

understand how such measurements can be applied to improve biophysical parameterizations and model or satellite-derived 

flux inventories. In particular, the spatiotemporal scales of airborne flux measurements – snapshot pictures in time over 10 

regional areas – are very different from the long-term, but spatially-sparse, tower flux observations typically available to the 

community. Future efforts with the CARAFE dataset will include detailed comparisons to both ground observations and 

high-resolution earth system models, with the dual goals of developing techniques to upscale flux observations and 

furthering process-level understanding of biosphere carbon exchange. 

 Potential applications of airborne fluxes extend far beyond the topics outlined here. Augmentation of the CARAFE 15 

payload with additional observations, such as mixing ratios and/or fluxes of carbonyl sulfide or CO2/H2O isotopes, would 

synergistically enhance the value of future datasets for diagnosing plant physiological responses. Additional surface remote 

sensing capabilities, such as mapping of vegetation characteristics or solar-induced fluorescence, are also highly desirable. 

The methodology developed here is equally applicable to fluxes of reactive gases, including ozone, volatile organic 

compounds and oxidized nitrogen compounds. The process-level drivers of emission, deposition and transformation of these 20 

gases remain highly uncertain, and observational constraints on surface-atmosphere exchange are needed to challenge and 

improve air quality and chemistry-climate models. The combination of energy, carbon, and reactive gas fluxes may even 

provide new insights into the anthropogenic impact on earth-atmosphere interactions. 

6 Data and code availability 

All observations, 1 Hz fluxes and related quantities are publicly available through the CARAFE mission page at 25 

https://www-air.larc.nasa.gov/missions/carafe/index.html. Flux analysis code is available upon request from the 

corresponding author and will eventually be refined into a publicly-available Matlab toolbox. 
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Table 1. Instrument specifications for the CARAFE payload. 

Measurement Instrument 
Data Rate 

(Hz) 

1s Precision 

(@ 1Hz) 
Accuracy 

CO2 
LGR 

Picarro 

10 

0.2 

330 ppb 

50 ppb 
0.015% 

CH4 
LGR 

Picarro 

10 

0.2 

2.0 ppb 

0.4 ppb 
0.03% 

H2O 

LGR 

Picarro 

DLH 

10 

0.07 

20 

200 ppm 

100 ppm 

10 ppm 

7%
a
 

7%
a
 

5% 

3-D winds 

Pressure 
TAMMS 20 

0.05 m s
-1

 

0.003 mb 

5% 

5% 

Vertical wind Rosemount 858 20 0.05 m s
-1

 5% 

Temperature Rosemount TAT 20 0.05 K 5% 

Aircraft position 

Aircraft attitude 
Applanix 510 20 

- 

- 

100 m 

0.005° 

Telemetry NASDAT 20 - - 

Visible imagery 

IR imagery 

4-band veg. health 

Nikon 7000 

FLIR 325sc 

MS RedEdge 

1 - - 

PPFD LI-190R 1 - 10% 
a
Based on in-flight comparison with DLH. 
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Figure 1. The CARAFE payload. (a) The NASA C-23B Sherpa. (b) A view inside the cabin with all instruments installed. (c) The 

angle-of-attack (upper) and total air temperature (lower) probes. (d) The DLH window plate (upper left) and fairing-mounted 

target (lower right). (e) GHG inlet. (f) Flight tracks for both campaigns. 5 
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Figure 2. Least squares fit lines (a-c) and correlation coefficients (d) for Picarro and LGR dry mixing ratios of CO2, CH4 and H2O 

obtained during flights in 2016. Fits are colored by flight and shown only over the range of mixing ratios observed on each flight. 

Dashed lines in a), b) and c) denote a 1:1 correlation. 5 
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Figure 3. Example imagery from the SIS recorded during the 09 September 2016 flight over Pocomoke forest. (a) Visible image 

from the Nikon 7000. (b) surface temperature from the FLIR A325sc. (c) Normalized difference vegetation index (NDVI) derived 

from the “red” (668 ± 10 nm) and “near IR” (840 ± 40 nm) bands of the MicaSense RedEdge sensor. Note, the color scale for the 5 
latter saturates at both ends. 
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Figure 4. Example wavelet CO2 flux calculation from a flight leg at 130 m altitude over Great Dismal Swamp, VA on 16 May 2017. 

(a) Normalized 10 Hz time series of vertical wind speed (w, magenta) and CO2 (gray) fluctuations. (b) Local wavelet cospectrum. 

Red areas denote positive power, blue areas negative. Power is bias-corrected (multiplied by scale) as suggested by Liu et al. 5 
(2007). Hatched area indicates the cone of influence (COI). (c) Scale-integrated wavelet flux (cyan: 10 Hz, blue: 2 km running 

mean) and ensemble-average flux (green dash). Crosses denote points where 50% or more of the cospectral power lies within the 

COI. 
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Figure 5. Global cospectra of vertical wind and potential temperature for the leg described in Fig. 4, calculated by time-averaging 

the local wavelet cospectrum (blue) and fast Fourier transforms (green). Cospectra are scaled for display. Dashed lines show the 

cumulative integrals of the cospectra (ogives), normalized by total covariance. 5 
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Figure 6. Impact of treatment of the COI on wavelet fluxes. Wavelet fluxes are calculated either including (blue circles) or 

excluding (red triangles) cospectral power within the COI. In addition, wavelet time series are filtered using the qcoi quality flag 

(see text) at various thresholds prior to averaging over each leg. Symbols represent the median ratio of wavelet to ensemble-5 
average fluxes for all scalars (CO2, CH4, H, LE-LGR and LE-DLH) and legs with stationarity flags of 0.1 or less. Error bars 

represent standard errors on the ratio. 
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Figure 7. Distribution of errors, normalized by leg-average fluxes, for all 2017 flight legs below 200 m altitude (97 legs total). In the 

box plots, the center line is the median value, box edges are 25th/75th percentiles and whiskers are 5th/95th percentiles. Turbulence 

sampling errors (systematic: light gray, random: dark gray) are the same for all scalars. Instrument-specific systematic error 5 
sources include measurement accuracy (dark green) and limited response time (light green). Random errors due to uncorrelated 

noise are shown in indigo. Empirical random errors, which inherently include both the turbulence and instrument noise 

components, are derived for both the leg ensemble (blue) and the wavelet time series (cyan). The total error (black) is the sum of 

SEturb, SErt, SEacc and REwave. Also shown is the distribution of divergence corrections (red) and the additional fractional 

uncertainty in flux associated with this correction (orange). Note that SERT for DLH-H2O is undefined as this instrument is the 10 
time response standard. 
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Figure 8. Vertical profile of sensible heat flux observed over Pocomoke forest on 16 September 2016. Points represent mean CWT 

fluxes accumulated over ~43 km (9 min) of flight along two side-by-side tracks spaced ~2 km apart (circles: west tracks, triangles: 

east tracks). CWT fluxes with qcoi > 0.5 are excluded from the averages. Error bars represent total errors (systematic plus 5 
random). Data are colored by the mean solar zenith angle (SZA) during the leg. The blue dashed line is an error-weighted least-

squares fit for all fluxes with SZA below 38°. Note that fluxes for this flight may be biased low by ~18% due to the vertical wind 

spectral artifact discussed in Sect. 2.2. 
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Figure 9. Example vertical wind - scalar cross covariance functions (a), CWT power spectra (b) and CWT cospectra (c) for a 31 

km leg at 100 m altitude (z/zi ~0.1) over Alligator River, NC on 26 May 2017. Cross covariance functions are normalized by peak 

covariance and time-shifted to align the peaks. Spectra are frequency-multiplied and (co)variance-normalized. The dashed line in 5 
(b) shows the expected -2/3 decay in the inertial subrange. 
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Figure 10. Comparison of water vapor mixing ratios (a) and latent heat fluxes (b) for all legs of the 2017 mission. Cyan dots 

represent 1 Hz average data. Blue lines are reduced major axis linear fits. 
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Figure 11. Comparison of horizontal CO2 flux profiles sampled over the same region of mixed cropland and forest on 04 May 

2017. Colored circles represent 2 km average fluxes from each of five consecutive legs. The solid black line, shading, and dotted 

lines are the mean, 1 random error, and 2 random error, respectively. 5 
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